Solvability of Mixed Problems for a Fourth-Order Equation with Involution and Fractional Derivative

نویسندگان

چکیده

In the present work, two-dimensional mixed problems with Caputo fractional order differential operator are studied using Fourier method of separation variables. The equation contains a linear transformation involution in second derivative. considered problem generalizes some previous formulated for fourth-order parabolic-type equations. basic properties eigenfunctions corresponding spectral problems, when they defined as products two systems eigenfunctions, studied. existence and uniqueness solution to is proved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of Periodic Boundary-value Problems for Second-order Nonlinear Differential Equation Involving Fractional Derivatives

This article concerns the existence of solutions to periodic boundaryvalue problems for second-order nonlinear differential equation involving fractional derivatives. Under certain linear growth condition of the nonlinearity, we obtain solutions, by using coincidence degree theory. An example illustrates our results.

متن کامل

Numerical solution for boundary value problem of fractional order with approximate Integral and derivative

Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...

متن کامل

On the solvability of a boundary value problem for a fourth-order ordinary differential equation

We study the existence and multiplicity of nontrivial periodic solutions for a semilinear fourth-order ordinary differential equation arising in the study of spatial patterns for bistable systems. Variational tools such as the Brezis–Nirenberg theorem and Clark theorem are used in the proofs of the main results. © 2004 Elsevier Ltd. All rights reserved. MSC: 34B15; 34C25; 35K35

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation

In this paper we study some boundary value problems for fractional analogue of Helmholtz equation in a rectangular and in a half-band. Theorems about existence and uniqueness of a solution of the considered problems are proved by spectral method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2023

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract7020131